

1. Scope

The SCC series X2, X1/Y2 safety capacitors are designed specifically for use in modem, facsimile, telephone and other electronic equipment.

These parts are compliant to EN60384-14, IEC60384-14, UL60384-14, CSA 60384-1 & CSA 60384-14.

(This product compliant with the RoHS and Pb free.)

2. Parts Number Code

(1)Product

Product Code	
SCC	Safety Approval of MLCC Product

(2)Chip Size

Code	Length×Width	unit : mm(inch)
1808	4.60× 2.00	(.18× .08)
1812	4.60× 3.20	(.18x .12)
2208	5.70× 2.00	(.22× .08)
2211	5.70× 2.80	(.22× .11)
2220	5.70× 5.00	(.22× .20)
2825	7.10× 6.35	(.28× .25)

(3)Temperature Characteristics

Code Temperature		Temperature	Temperature	
	Characteristic	Range	Coefficient	
N	NPO	-55°C ~+125°C	30 ppm/℃	
X	X7R	-55°℃~+125°℃	± 15%	

(4)Capacitance

unit :pico farads(pF)

Code	Nominal Capacitance (pF)				
5R0	5.0				
120	12.0				
151	150.0				
222	2,200.0				
103	10,000.0				

%. If there is a decimal point, it shall be expressed by an English capital letter R

(5) Capacitance Tolerance

Code	Tolerance	Nominal Capacitance
С	± 0.25 pF	Less Than 10 pF
D	± 0.50 pF	
E	± 1.00 pF	(Include 10 pF)
J	± 5.00 %	More Than 10 pF
K	± 10.0 %	
M	± 20.0 %	
Q	+10%~+20%	

(6) Class Level of Capacitors

h	_	
Code	Class	
202	X2	
252	X2 (305Vac)	
502	X1/Y2	
602	X1/Y2 for	

SCC2208N,SCC2211N,SCC2220N Series

(7)Tapping

Code	Type	
Т	Tape & Reel	
В	Bulk	

(8)Special Requirement Code

Code	Туре
G	Pb free Type

3. Nominal Capacitance and Tolerance

3.1 Standard Combination of Nominal Capacitance and Tolerance

Class	Characteristic	Toler	ance	Nominal Capacitance	
Class	NPO	Less Then 10 pF C (± 0.25 pF)		0.5,1,1.5,2,2.5,3,3.5,4,4.5,5	
I		D (± 0.50 pF)		5,6,7,8,9,10	
		E (± 1.00 pF)		6,7,8,9,10	
		More Than 10 pF J (± 5.00 %)		E-24 series	
			K (± 10.0 %)		
Class II	X7R	K (± 10.0 %),	M (± 20.0 %)	E-12 series	

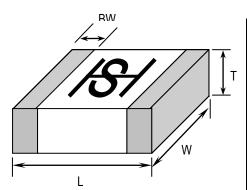
3.2 E series(standard Number)

Standard No.	Application Capacitance											
E- 3	1.0					2	.2			4	.7	
E- 6	1	.0	1	.5	2	.2	3	.3	4	.7	6	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

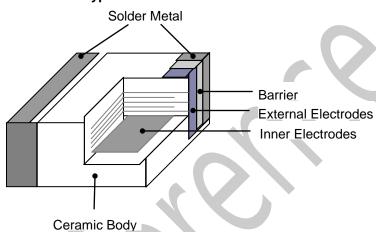
4. Operation Temperature Range

Class	Characteristic	Temperature Range	Reference Temp.
I	NPO	-55°C ~ +125°C	25℃
П	X7R	-55°C ~ +125°C	25 ℃

5. Storage Condition


Storage Temperature : 5 to 40° C Relative Humidity : 20 to 70 % Storage Time : 12 months max.

6. Dimensions


6.1 Configuration and Dimension:

TYPE	L	W	T (max)	BW (min)
1808	4.60± 0.30	2.00± 0.20	2.20	0.20
1812	4.60± 0.30	3.20± 0.30	2.60	0.20
2208	5.70± 0.40	2.00± 0.20	2.20	0.30
2211	5.70± 0.40	2.80± 0.30	3.00	0.30
2220	5.70± 0.40	5.00± 0.40	3.00	0.30
2825	7.10± 0.30	6.35± 0.40	3.40	0.30

6.2 Termination Type:

7. Electronic Nominal Specification

7.1 Safety Standard:

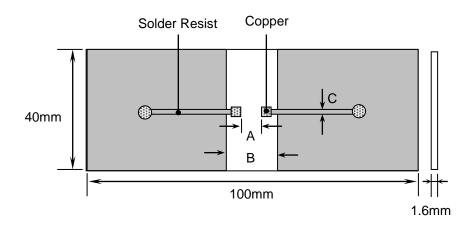
TUV : IEC 60384-14:2013 EN 60384-14:2013 UL :UL 60384-14 CSA 60384-1 & CSA 60384-14

Temperature	Class	Size	Rated	Certificated		•	ance Range	,	
Characteristic			Voltage		10	0 10	10)2	103
NPO	X2	1808	250 Vrms	TUV/UL	2			1000	
X7R	X2	1808	250 Vrms	TUV/UL		150		2200	
X7R	X2	1812	250 Vrms	TUV/UL		3:	30	4700)
X7R	X2	2220	250 Vrms	TUV/UL		150			33000
X7R	X2	2825	250 Vrms	UL			47	000 🚃	56000
NPO	X1/Y2	1808	250 Vrms	TUV/UL	2		330		
X7R	X1/Y2	1808	250 Vrms	TUV/UL		150		1000	
NPO	X1/Y2	1812	250 Vrms	TUV/UL	2		680)	
X7R	X1/Y2	1812	250 Vrms	TUV/UL		130		1000	
NPO	X1/Y2	2208	250 Vrms	TUV/UL	2		330		
X7R	X1/Y2	2208	250 Vrms	TUV/UL	;	36		1000	
NPO	X1/Y2	2211	250 Vrms	TUV/UL	2			1000	
X7R	X1/Y2	2211	250 Vrms	TUV/UL		68 🗔		2700	
NPO	X1/Y2	2220	250 Vrms	TUV/UL	2			1200	
X7R	X1/Y2	2220	250 Vrms	TUV/UL		100		4700	,
X7R	X2	2220	305 Vrms	TUV/UL		150			33000

8. Performance

No.	Ite	m	Spec	cification	Test Condition
1	Vis	ual	No abnormal exter	ior appearance	Visual Inspection
2	Dime		See Page 3 / Item		Visual Inspection
3	Capac		Within the specific	ed tolerance	Char. Frequency Voltage
4	Q and Dissipation Factor		More than 30pF : Q \geq 1000 30pF & below: Q \geq 400+20C (C:pF) Class II (X7R) Maximum : 2.5% (0.025)		NPO $C \le 1000 pF$ 1MHz± 10% 1.0± 0.2Vrms $C > 1000 pF$ 1KHz± 10% 1.0± 0.2Vrms After performing deage at 150±5% for 30min. and placement room temperature for 24±2hr.
5	Insula Resist		Minimum 10,000M	Ω	Applied Voltage: Applied Voltage: Applied Voltage:500V Charge Time:60sec.
6	Resistance Voltage Proof		breakdown		Applied Voltage: X Capacitor :Applied Voltage 1075Vdc(4.3Ur) Y Capacitor :Applied Voltage 1500Vac For 1min. Voltage ramp up rate ≤ 150V/sec(for Vac Test) charge/discharge Current is less than 50mA.
7	7 Solderability		More than 90% of the terminal surface is to be soldered newly, so metal part does not come out or dissolve		Solder Temperature: 245±5°C Dip Time: 5±0.5 sec. Immersing Speed: 25±10% mm/s Solder: Lead Free Solder Flux: Rosin Preheat: At 80~120 °C For 10~30sec.
8	Resistance to	Appear- ance	No mechanical da	mage shall occur.	Bending shall be applied to the 1.0 mm with
	Flexure of Substrate	Capacit- ance	Characteristic Class I (NPO) Class II (X7R)	Cap. Change ≤ ± 5.0% of initial value ≤ ± 12.5% of initial value	1.0 mm/sec. R340 Bending Limit
		Q / tanδ	To satisfy the spec	ified initial value	- LC Meter I
		Insulation Resistance			45±1mm 45±1mm
		Voltage Proof	To satisfy the spec		Solder the capacitor on P.C. board shown in Fig 1. before testing.
9	Robustness			eling shall occur on	Pull force shall be applied for 10± 1 second.
	of Shear	ance	the terminal electro		≤06035N(≒ 0.5 Kg·f) >060310N(≒1.0 Kg·f)
	Sileal	Capacit- ance	Characteristic	Cap. Change ≤ ± 5.0% of initial	/ / 0003 1014(1.0 r.g·1)
		anoc	Class I (NPO)	value	
	K		Class II (X7R)	≤ ± 12.5% of initial	N·f
		Q / tanδ	To Satisfy The Spe	value	
	-		<u> </u>		Solder the capacitor on BC heard shows in
		Insulation Resistance	To Satisfy The Spe	cinea miliar value	Solder the capacitor on P.C. board shown in
		Voltage	To Satisfy The Spe	ecified Initial Value	Fig 1. before testing.
		Proof			

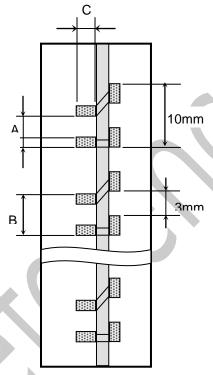
No.	Ite	m	Spe	cification	Test Condition
10	Resistance To	Appear- ance	No mechanical da	mage shall occur.	Class II capacitor shall be set for 48±4 hours at room temperature after one hour heat
		Capacit-	Characteristic	Cap. Change	treatment at 150 +0/-10°C before initial
	Heat	ance	Class I (NPO)	≤ ± 10% of initial	measure.
		arioo	Oldoo I (III O)	value	Preheat : At 150± 10°C For 60~120sec.
			Class II (X7R)	≤ ± 20% of initial	Dip : Solder Temperature of 260± 5°C
			()	value	Dip Time : 10 ± 1sec.
		Q / Tanδ	To satisfy the spec	ified initial value	Flux :Rosin Measure at room temp. after cooling for:
		Insulation	More than 1,000M	Ω	Class I : 24 ± 2 Hours
		Resistance			Class II : 48 ± 4 Hours
		Voltage Proof	To Satisfy The Spe	ecified Initial Value	
11	Damp Heat		No mechanical da	mage shall occur.	Test Condition :
	/	ance			Temperature : 40°C
	Steady	Capacit-	Characteristic	Cap. Change	Humidity: 95 %RH
	State	ance	Class I (NPO)	≤ ± 15% of initial	Test Time: 500hr (21days)
				value	The capacitors with rated voltage(250Vac)
			Class II (X7R)	≤ ± 15% of initial	applied. Measure at room temp. after cooling for:
		Q	More Than 30pF :	value	Class I :24 ± 2 Hrs
		Class I	30pF & Below:Q		
		Tan δ	Maximum 5.0%	(o.p.)	
		Class II			Solder The Capacitor On P.C. Board Shown
		Insulation	More Than 1,000N	ΛΩ	In Fig 2. Before Testing.
		Resistance			
		Voltage Proof	To Satisfy The Spe	ecified Initial Value	
12	Endurance	Appear-	No Mechanical D	amage Shall Be	Impulse Voltage
		ance	Occur		Each individual capacitor shall be subjected
		Capacit-	Characteristic	Cap. Change	<u> </u>
		ance	Class I (NPO)	≤ ± 20% of initial value	to a 2.5KV(X2) and 5KV(X1/Y2) impulse for
			Class II (X7R)	≤ ± 20% of initial	three times. Then the capacitors are applied
			Class II (X/IX)	value	to life test.
		Q	More Than 30pF:		to me test.
		Class I	30pF & Below:Q		
		Tan δ	Maximum 5.0%	, 1 /]
		Class II			
			Minimum 1,000MΩ)	
		Resistance]


Voltage Proof	To satisfy the specified initial value	Front time $T_1=1.2\mu s=1.67T$ Time to half-value $T_2=50\mu s$
		Temperature : 125°C
		Test Time : 1000hrs
		Applied Voltage :
		Class X Capacitors :1.25Ur (312.5Vac)
		Class Y Capacitors :1.70Ur (425Vac)
		Except that once every hour the voltage
		shall be increased to 1000Vrms for 0.1s.

No.	Item	Specification	Test Condition
13	Passive Flammability	Capacitor didn't burnt at all	Volume Sample : 21.56mm ³
			Flame exposure time : 5 sec.Max.
14	Active	The cheese cloth shall not burn with	The capacitors of class each test capacitors
	Flammability	a flame	applied Ur(250Vac).
			Then each sample shall be subjected to 20
			discharges from a tank capacitor, charge to a
			voltage that, when discharged, places Ui(2500V)
			across the capacitor under test. The interval
			between successive discharges shall be 5s.

Fig.1
P.C. Board for Bending Strength Test

(referring to IEC384-14 and EN132400)



Material : Glass Epoxy Substrate

: Copper (Thickness: 0.035mm)

□: Solder Resist

Fig.2
Test Substrate

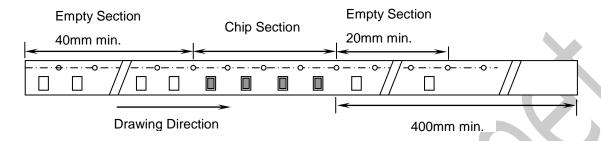
Material : Glass Epoxy Substrate

□ : Copper (Thickness : 0.035mm)

☐: Solder Resist
Thickness: 1.6 mm

Unit:mm

Type	Α	В	С
1206	2.2	5.0	2.0
1808	3.5	7.0	2.5
1812	3.5	7.0	3.7
2208	4.5	8.0	2.5
2211	4.5	8.0	3.0
2220	4.5	8.0	5.6



9. Packing

9.1 Bulk Packing

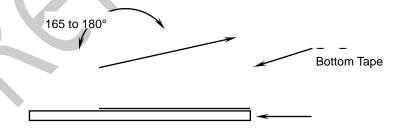
According to customer request.

9.2 Chip Capacitors Tape Packing

9.3 Material And Quantity

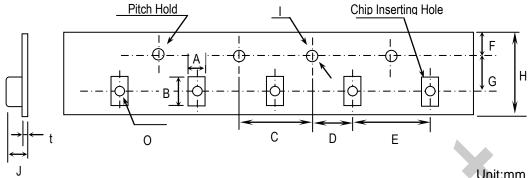
Tape		1206				
Material	T≦0.90mm	0.90mm <t≦1.25mm< td=""><td>T>1.25mm</td></t≦1.25mm<>	T>1.25mm			
Plastic	4,000 pcs/Reel	3,000 pcs/Reel	2,000 pcs/Reel			

Tape	18	80	1812/2208/2211/2220		
Material	0.9 mm $<$ T \leq 1.25mm	1.25mm < T ≦ 2.0mm	1.25mm < T ≦ 2.2mm	T>2.2mm	
Plastic	3000 pcs/Reel	2000 pcs/Reel	1000 pcs/Reel	700 pcs/Reel	


Tape	2825
Material	T>2.6mm
Plastic	400 pcs/Reel

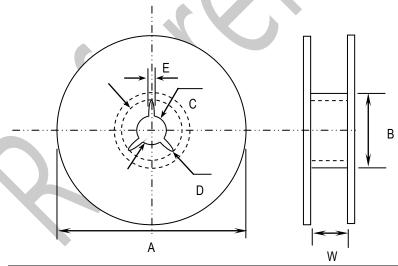
9.4 Cover Tape Reel Off Force

9.4.1 Peel-Off Force


 $5 g \cdot f \leq Peel-Off Force \leq 70 g \cdot f$

9.4.2 Measure Method

9.5 Plastic Tape


U	nit:	mm

Type	А	В	С	D	Е	F
1206	1.9± 0.2	3.5± 0.2	4.0± 0.1	2.0± 0.05	4.0± 0.1	1.75± 0.1
1808	2.5±0.2	4.9±0.2				
1812	3.6±0.2	4.9±0.2			8.0± 0.1	
2208	2.5±0.2	6.1±0.2				
2211	3.2±0.2	6.1±0.2				
2220	5.4±0.2	6.1±0.2				
2825	6.7±0.2	7.5±0.2			12.0± 0.1	

Туре	G	Н	I	J	t	0
1206	5.5± 0.05	12.0 ± 0.3	φ 1.5+0.1/-0	3.7 max.	0.3 max.	1.0± 0.1
1808						1.5± 0.1
1812						
2208						
2211						
2220						
2825	7.5± 0.10	16.0 ± 0.3			0.35 max.	

9.6 Reel Dimensions

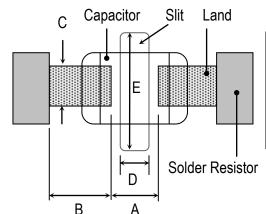
Reel Material: Polystyrene

Unit:mm

Type	А	В	С	D	Е	W
1206	178± 2.0	φ 50 min	φ 13± 0.5	φ 21± 0.8	2.0±0.5	14± 0.15
1808						
1812						
2208						
2211						
2220						
2825						

Page: 10 /15

Caution

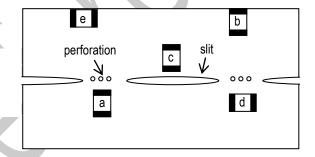

1. Storage

Store the capacitors where the temperature and relative humidity don't exceed 40°C and 70%RH. We recommend that the capacitors be used within 12 months from the date of manufacturing. Store the products in the original package and do not open the outer wrapped, polyethylene bag, till just before usage. If it is open, seal it as soon as possible or keep it in a desiccant with a desiccation agent.

2. Construction of Board Pattern

Improper circuit layout and pad/land size may cause excessive or not enough solder amount on the PC board. Not enough solder may create weak joint, and excessive solder may increase the potential of mechanical or thermal cracks on the ceramic capacitor. Therefore we recommend the land size to be as shown in the following table:

2.1 Size and recommend land dimensions for reflow soldering.

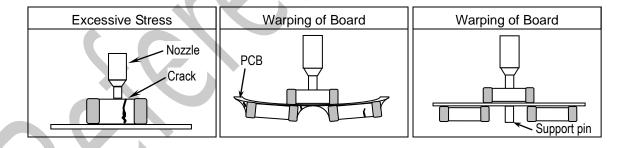

EIA Code	Chip (mm)		Land (mm)				
	L	W	Α	В	С	D	Е
1808	4.60	2.00	2.8~3.4	1.2~1.4	1.5~1.8	1.0~2.8	3.6~4.1
1812	4.60	3.20	2.8~3.4	1.2~1.4	2.3~3.0	1.0~2.8	4.8~5.3
2208	5.70	2.00	4.0~4.6	1.4~1.6	1.5~1.8	1.0~4.0	3.6~4.1
2211	5.70	2.80	4.0~4.6	1.4~1.6	2.0~2.6	1.0~4.0	4.4~4.9
2220	5.70	5.00	4.0~4.6	1.4~1.6	3.5~4.8	1.0~4.0	6.6~7.1

2.2 Mechanical strength varies according to location of chip capacitors on the P.C. board.

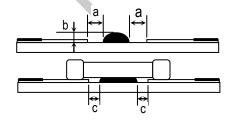
Design layout of components on the PC board such a way to minimize the stress imposed on the components, upon flexure of the boards in depanelization or other processes.

Component layout close to the edge of the board or the "depanelization line" is not recommended.

Susceptibility to stress is in the order of: a>b>c and d>e


2.3 Layout Recommendation

Example	Use of Common Solder Land	Solder With Chassis	Use of Common Solder Land With Other SMD
Need to Avoid	Lead Wire Chip Solder Adhesive Solder Land	Chassis Excessive	Solder Land
Recommendation	Lead Wire Chip Solder Resist Adhesive Solder Land	Solder Resist $\alpha > \beta$	Solder Land


3. Mounting

3.1 Sometimes Crack is caused by the impact load due to suction nozzle in pick and place operation.

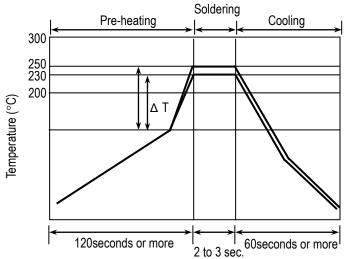
In pick and place operation, if the low dead point is too low, excessive stress is applied to component. This may cause cracks in the ceramic capacitor, therefore it is required to move low dead point of a suction nozzle to the higher level to minimize the board warp age and stress on the components. Nozzle pressure is typically adjusted to 1N to 3N (static load) during the pick and place operation.

3.2 Amount of Adhesive

Example: 0805 & 1206

а	0.2mm min.		
b	70 ~ 100 μm		
С	Do not touch the solder land		

Page: 12/15



4. Soldering

4.1. Wave Soldering

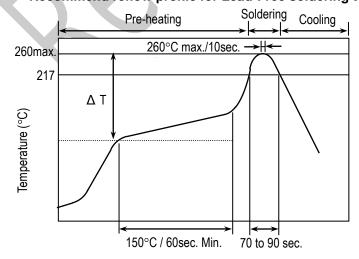
Most of components are wave soldered with solder at 230 to 250°C. Adequate care must be taken to prevent the potential of thermal cracks on the ceramic capacitors. Refer to the soldering methods below for optimum soldering benefits.

Recommend flow soldering temperature Profile

Soldering Method	Change in Temp.(°C)
1206 and Under	Δ T ≤ 100~130 max

When setting preheat temperatures, that recommend as preheat conditions which can pass the following points for PCB.

- 1) Preheat temperature is too low
 - a. Flux flows to easily
 - b. Possibility of thermal cracks
- 2) Preheat temperature is too high
 - a. Flux deteriorates even when oxide film is removed
 - b. Too large a warp in circuit board
 - c. Loss of reliability in chip and other parts


Cooling Condition:

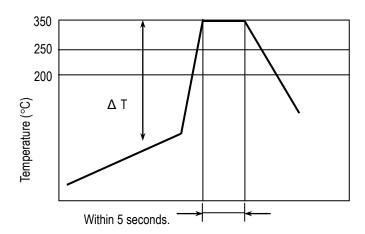
Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (Δ T) must be less than 100°C

4.2 Reflow Soldering

Preheat and gradual increase in temperature to the reflow temperature is recommended to decrease the potential of thermal crack on the components. The recommended heating rate depends on the size of component; however it should not exceed 3°C/Sec.

Recommend reflow profile for Lead-Free soldering temperature Profile (MIL-STD-202G #210F)

The cycles of soldering : Twice (max.)


Soldering Method	Change in Temp.(°C)
1206 and Under	Δ T \leq 190 $^{\circ}$ C
1210 and Over	Δ T ≦ 130 °C

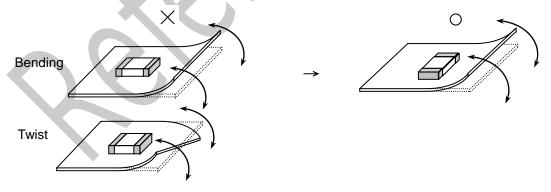
Page: 13 /15

4.3 Hand Soldering

Sudden heating of the components results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential Δ T, within the range shown in table. The smaller the Δ T, the less stress on the chip.

Soldering Method	Change in Temp.(°C)
1206 and Under	Δ T ≦ 150 °C
1210 and Over	Δ T \leq 130 $^{\circ}$ C

How to Solder Repair by Solder Iron

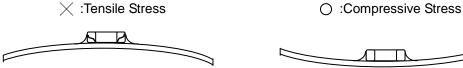

1) Selection of the soldering iron tip

Tip temperature of solder iron various by its type, P.C.board material and solder land size. Higher the tip temperature, quick the operation is .but the heat shock may crack the chip capacitor.

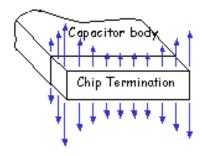
- 2) recommended solder iron condition
 - a.) Preheating Condition: Board and components should be preheated sufficiently at 150°C or over, and soldering should be conducted with soldering iron as boards and components are maintained at sufficient temperatures.
 - b.) Soldering iron power shall not exceed 30 W.
 - c.) Soldering iron tip diameter shall not exceed 3mm.
 - d.) Temperature of iron tip shall not exceed 350°C and the process should be finished within 5 seconds. (refer to MIL-STD-202G)
 - e.) Do not touch the ceramic dielectric with solder iron other than the terminations. Direct contact of the soldering iron with ceramic dielectric of chip capacitor may cause crack.
 - f.) After soldering ,let the products to cool down gradually in the room temperature.
- * The soldering to lose the use of electronic heat gun.

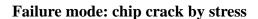
5. Handling after chip mounted

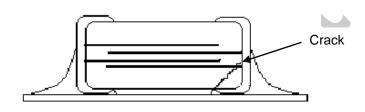
5.1 Please pay attention put the component lateral to the direction in which stress acts.



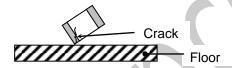
5.2 Crack will be caused if board is warped due to excessive load by check pin.

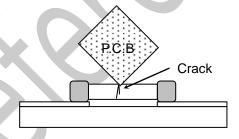



- 5.3 Mechanical stress due to warping and torsion by dividing.
 - (a) Crack occurrence ratio will be increased by manual separation.
 - (b) Crack occurrence ratio will be increased by tensile force, rather than compressive force.



Capacitor Stress Analysis





6. Handling of Loose Chip Capacitor

6.1 If dropped the chip capacitor may crack.

6.2 Piling the P.C. board after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitor of another of board to cause crack.

7. Safekeeping condition and period

For safekeeping of the products, we recommend to keep storage temperature +5 ~+40 $^{\circ}$ C , Humidity 20 ~70%RH and use them within 12 months.